Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ghali Al Houari,^a Abdelali Kerbal,^a Brahim El Bali^b and Michael Bolte^c*

^aDépartement de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas, 30000 Fès, Morocco, ^bLaboratory of Mineral Solid Chemistry, Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 624, 60000 Oujda, Morocco, and ^cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.038 wR factor = 0.105Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Isopropyl-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1(2*H*)-one

The title compound, $C_{21}H_{22}O_2$, has the exocyclic C=C double bond in an E configuration. The isopropyl group is attached in an axial position to the cyclohexenone ring.

Received 12 September 2005 Accepted 13 September 2005 Online 21 September 2005

Comment

Knowledge of the configuration and conformation of the title compound, (I), is necessary to understand its behaviour in dipolar-1,3 cycloaddition reactions (Badri *et al.*, 1999; Bennani *et al.*, 2002). To confirm the *E* configuration of the exocyclic C=C double bond and the axial position of the isopropyl group an X-ray crystal structure determination was carried out.

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Crystallographic Database, Version 1.7; Mogul Version 1.0.1; Allen, 2002). The exocyclic C=C double bond shows an E configuration. The carbonyl group is almost coplanar with this double bond $[O1-C1-C2-C11=-4.61\ (18)^\circ]$, but the p-methoxyphenyl ring attached to it is twisted out of the plane of the double bond $[C2-C11-C12-C17=-35.39\ (19)^\circ]$. The isopropyl group is attached in an axial position to the cyclohexenone ring.

Experimental

The synthesis of 4-isopropyl-para-anisyl-phenylidene-2-tetralone-1 was achieved using the method reported by Kerbal et al. (1988), i.e. by a condensation of para-anisaldahyde with 4-isopropyltetralone-1 in an alkaline medium in methanol.

 $D_v = 1.215 \text{ Mg m}^{-3}$

Cell parameters from 25892

Mo $K\alpha$ radiation

reflections

 $\mu = 0.08 \text{ mm}^{-1}$

T = 173 (2) K

Block, colourless $0.35 \times 0.33 \times 0.29 \text{ mm}$

 $\theta = 3.4-25.8^{\circ}$

Crystal data

 $C_{21}H_{22}O_2$ $M_r = 306.39$ Monoclinic, $P2_{1}/n$ a = 7.9380 (5) Å b = 9.3745 (4) Å c = 22.7340 (16) Å $\beta = 98.219$ (5)° V = 1674.37 (17) Å³ Z = 4

doi:10.1107/\$1600536805029028

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Stoe IPDS-II two-circle diffractometer $R_{\rm int} = 0.040$ ω scans $\theta_{\rm max} = 25.6^{\circ}$ Absorption correction: none $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -27 \rightarrow 25$

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0595P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.038 & + 0.4741P] \\ wR(F^2) = 0.105 & where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ S = 1.02 & (\Delta/\sigma)_{\rm max} = 0.001 \\ 3147 \ \mbox{reflections} & \Delta\rho_{\rm max} = 0.25 \ \mbox{e Å}^{-3} \\ 210 \ \mbox{parameters} & \Delta\rho_{\rm min} = -0.17 \ \mbox{e Å}^{-3} \\ \mbox{H-atom parameters constrained} & Extinction coerficient: 0.024 (3) \\ \end{array}$

Table 1
Selected bond lengths (Å).

O1-C1	1.2332 (15)	C2-C11	1.3458 (17)
C1-C2	1.4967 (17)	C11-C12	1.4703 (17)

All H atoms were located in a difference map and were refined with fixed individual displacement parameters $[U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ or $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm C}_{\rm methyl})]$ using a riding model, with C—H ranging from 0.95 to 1.00 Å. In addition, the CH₃ group attached to the O atom was allowed to rotate but not to tip.

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in

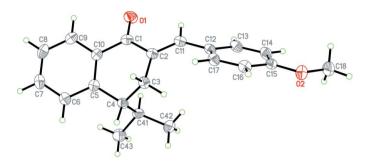


Figure 1

Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Badri, R., Kerbal, A., El Bali, B., Escudie, J., Ranaivonjatovo, H. & Bolte, M. (1999). Acta Cryst. C55, IUC9900165.

Bennani, B., Filalibaba, B., El-Fazazi, A., Al Houari, G., Bitit, N., Kerbal, A., El Bali, B. & Bolte, M. (2002). *Acta Cryst.* E**58**, o312–o313.

Kerbal, A., Tshiamala, K., Vebrel, J. & Laude, B. (1988). Bull. Soc. Chim. Belg. 97, 149–161.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.